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§8. HAMILTONIAN MECHANICS 

In order to proceed from the classical formulation of Maxwell's 
electrodynamics to the quantum mechanical description a new 
mathematical language will be needed. In the previous sections the 
electromagnetic field was described using partial differential equations — 
Maxwell's equations — for the field components and their vector and 
scalar potentials. These equations provided the basis for the development 
of the equations of motion of charged particles embedded in the 
electromagnetic field. However these equations of motion were simplified 
descriptions of the actual motions of large numbers of charges in a 
conducting material. In this previous formulation, the electromagnetic 
field was an abstract mathematical entity. This approach was a 
consequence of the classical nature electromagnetism since the field is 
treated as an ethereal entity that serves as the medium to carry 
electromagnetic waves, their energy and momentum.  

Special methods have been developed by Lagrange in order to deal 
with the large — possibly infinite — number of particles. By formulating 
Newton’s 2nd Law in terms of the kinetic and potential energy as functions 
of the coordinate system in which the particles are moving. Lagrange 
succeeded in generalizing the use of the coordinates. This approach allows 
the equations of motion to be isolated from a specific coordinate system, 
which in terms allows the variational principal to be applied to a variety of 
problems including the description of the electromagnetic field and it 
quantum mechanical formulation.   

The formulation of the electromagnetic field can be restated in terms 
of Hamilton's theory of mechanics using the electromagnetic field's vector 
potential as a starting point [Heil81]. This method provides a classically 
consistent transition to the quantum mechanical description of the effect of 
the electromagnetic field on charged particles. In order to proceed with this 
formulation several new concepts must be presented. The quantum nature 
of matter will be briefly described followed by the description of 
Hamiltonian mechanics. The formulation of the equations of motion was 
first used in classical mechanics [Gold55], but now serves as the 
introductory method to quantizing the electromagnetic field. 

§8.1. NEWTON’S EQUATIONS IN LAGRANGIAN FORM 

Special methods have been developed by Lagrange in order to deal 
with the large – and possibly infinite – number of particles to be described 
by the equations of motion. By formulating Newton'’ 2nd  Law in terms of 
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the kinetic and potential energy as functions of the coordinate system in 
which the particles are moving. Lagrange succeed in generalizing the use 
of coordinates. 

This approach allows the equations of motion to be isolated from a 
specific coordinate system, which in turn allows the variational principal to 
be applied to a variety of problems including the description of the 
electromagnetic field and its quantum mechanical formulation. 

Isaac Newton formulated the laws of motion using a calculus of his 
own invention. Using the Cartesian coordinate system, Newton’s equations 
for the thi  particle with mass im  are: 
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where, iX , iY  and iZ  are the three components of the force acting on the thi  
particle. 

The transformation of the equations from Newtonian form to the 
Lagrangian form will be make use of both the kinetic and potential energy 
definition in the Cartesian coordinate system. The kinetic energy, T, is 
defined as: 
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If only conservative systems of particles are considered, then the 
potential energy, V, can be defined as a function of the coordinates 

…1 1 1, , , , , ,n n nx y z x y z  of all the particles. In this approach the force 
experienced by each particle is equal to the partial derivative of the 
potential energy, such that, 
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These equations can now be used to restate Newton’s equation of 
motion. By removing the references to the individual coordinates, the 
notation for the equations of motion can be simplified. Assuming that the 
force applied to the particle can be found from a potential, which is a 
function of both position and time, ( )r,V t , according to the relationship 

( ) ( )= − ∂ ∂r r r, ,F t V t . Substituting this expression into Newton’s equation 
of motion gives, 
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Since the momentum of the particle is = r&&p m , Newton’s equation can 
be rewritten as, 

 {
( )

−

∂
+ =

∂
r
r&&

&
14243

,
0

mx
F

V t
p . (8.5) 

Since the mass of the particle, m, is a constant, the momentum can be 
rewritten in terms of the particle’s kinetic energy, 
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By defining the kinetic energy as, = r& 2 2T m , and using this 
expression to eliminate the momentum p from Newton’s Law gives, 
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The kinetic energy is now a function of r&  but not rr . The potential 
energy V as a function of rr  but not r& . This allows the Lagrangian to be 
defined again as using the relations ∂ ∂ = ∂ ∂r r& &L T and ∂ ∂ = − ∂ ∂r rL V  as, 
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 ( ) ( ) ( )= −r r r r& &,L T V . (8.8) 

This now allows Newton’s Law to be stated as the Euler–lagrange 
equation (in Cartesian coordinates), 
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So far the changes from the description of Newton’s Law as the simple 
equations of motion, to the Lagrangian description has not simplified 
anything. In the next sections, the Lagrangian description of the motion of 
a particle will be used to remove the dependence on the Cartesian 
coordinate system. In addition the Hamiltonian description of the particles 
motion will be developed. This description will used as the basis for the 
quantum mechanical description of the electromagnetic field interacting 
with charged matter. 

§8.2. VARIATIONAL DESCRIPTION OF THE EQUATIONS OF MOTION 

The equations of motion of an object moving in a Cartesian coordinate 
system was first described by Isaac Newton. In Newton’s mechanics the 
motion of a particle is uniquely determined by the vectorial force acting on 
the particle at every instance of time [Lanc70], [Byro70], [Byro69], 
[Chan95]. In Newton’s mechanics the action of a force is described by the 
momentum produced by that force. There are other descriptions of the 
action of a force. One such description was provide by Gottfried Wilhelm 
Liebniz (1646–1716), who was a contemporary of Newton’s. Leibniz’ 
formulation included a quantity knows as vis viva (Latin for living force) 
which in modern terms is call the kinetic energy [Asim66]. Leibniz 
replaced Newton’s momentum by the kinetic energy and replaced Newton’s 
force by the work of the force. This work of the force was later replaced by 
the work function. Leibniz is now credited with founding a second branch 
of mechanics — analytical mechanics, which is based on the maintenance 
of the equilibrium between the kinetic energy and the work function. In 
modern terms the force function is replaced by the potential energy. This 
approach laid the foundation for the Principal of Least Action. 

It is convenient to divide the development of classical mechanics into 
three periods, the first based on Newton's Philosphiae Naturalis Principia 
Mathematica published in 1687 [Cajo62], the second based on Lagrange's 
Mécanique Analytique (Analytical Mechanics) published in 1788 [Lagr88] 
and the third based on Hamilton's General Method of Dynamics published 
in 1834 and 1835 [Hami34] and well as Carl Gustav Jacob Jacobi's (1804–
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1851) Vorlesunger über Dynamics published by Clebsh in 1866. These 
works established mechanics as a mathematical science complete with 
theoretical explanation of the behavior of objects and like the previous 
descriptions of Fourier's mathematical physics works, formed a paradigm 
for the methods used by Maxwell and the description of electromagnetic 
phenomenon. 

On New Year’s Day 1697, Johann Bernoulli (1667–1748) of the 
University of Basal posed the question to the sharpest mathematicians in 
the whole world — given two points A and B in a vertical plane, find the 
path A–M–B which the movable particle M will traverse in the shortest 
time, assuming the acceleration on M is due solely to gravity. Using 
Bernoulli’s description [Stru86], the curve ACEDB shown in Figure 8.1, 
has a path of least time from A to B. Letting C and D be two points on the 
curve, Bernoulli said CED must have the same path of least time. 

This is the essential point of Bernoulli’s argument and the power of 
this development in modern physics. Any curve which has a minimum 
property globally (in the large) must also have this property locally (in the 
small). If it were not the least time path than there would be some other 
path CFD which would be faster. If that were the case, the new path 
ACFDB would be faster than the path ACEDB, which would be contrary to 
the original hypothesis. 

The result is Bernoulli’s contribution to modern physics.. 

…the path quickest overall must be the quickest in between 
any intermediate points, and the property which holds globally 
most also hold locally. 
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Figure §8.1  ——   Bernoulli’s curve which describes the least time path between 
to points A and B. The mathematical problem was posed to the world’s 
mathematicians as a challenge. Although the solution was already known to 
Bernoulli, a simple solution was also known to Newton, who did not respond to 
Bernoulli’s challenge.  

This problem is known as the brackistochrome problem — brachistos = 
shortest and chronos = time — and it marks the beginning of the general 
interest in the calculus of variations [Byro69], [Chan95], [Stru86], 
[Reid69]. [1] Using Bernoulli’s approach the local principal allows the 
integral equations of motion to be transformed into differential equations 
of motion. The result is a greatly simplified method of analyzing the 
motion of the particle M along the path of least time. 

In any change which occurs in nature, the sum of the product of each 
body multiplied by the space it traverses and by its speed (referred to as “the 
action”) is always the least possible. 

  — Pierre Louis de Maupertuis [Maup46], [Doug90]. 

The development of analytical mechanics is associated with Leonhard 
Euler (1707–1783), Joseph Louis Lagrange (1736–1813), Simeon Poisson 
(1781–1840) and William Rowan Hamilton (1805–65). It is essentially a 
reformulation of Newton's mechanics which allows many problems to be 
solved more simply.  

                                                 
1 When Bernoulli first issued the challenge there were no responses. He forwarded the 

problem to Charles Montagu (   –   ), who was the president of the Royal Society. Isaac 
Newton responded to the question with an anonymous solution in a letter dated Jan 30, 
1697. The results were published in Philosophical Transactions, for January 1696/7. 
Although Bernoulli is given credit for the solution to his problem, Newton’s solution was 
recognized by Bernoulli in a letter to Basange de Beauval… 

…although it’s author, in excessive modesty, does not reveal his 
name, we can be certain beyond any doubt that the author is the 
celebrated Mr. Newton… [Chan95] 

When Bernoulli solved the brachistochrone problem he boasted of having discovered a 
wonderful solution, but did not publish it immediately. Instead he proceeded to challenge 
other mathematicians, especially his elder brother, Jacob (1654–1705). Bernoulli carried on 
a bitter feud in which he publicly characterized his brother as incompetent. He finally 
published his solution in 1697 which described the motion of a bob traveling on a cycloid 
path. Before Bernoulli published his work Huygens  had  discovered that a mass point 
oscillating without friction  under  the influence of gravity on a vertical cycloid has a period 
independent of amplitude. This cycloid was called a tautochrone with Bernoulli's discovery, 
this curve was renamed the brachistochrone [Cour56]. 
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Newtonian mechanics was founded on the concept of point masses, 
that is objects with no dimensional form. Newton's equations of motion are 
stated in terms of the Cartesian coordinates of the particle in motion. 
While the problems of dynamics can theoretically be solved by such 
means, in systems containing large numbers of particles, the integration of 
the equations of motion is generally too complex. Special methods were 
developed to deal with this complexity. 

Lagrange’s approach makes use of an integral equation containing the 
potential and kinetic energies. The kinetic energy (T) depends on the 
object’s velocity =v dx dt , while the potential energy (V), depends only on 
the object’s position x. The form of Lagrange’s solution is the difference 
between the kinetic and potential energies.  

Lagrange formulated the solution to the equations of motion by means 
of generalized coordinates, i.e. any set of variables sufficient in number to 
define unambiguously the configuration of the system. The generalized 
coordinates in the Lagrange and Hamilton descriptions of motion utilizing 
the expressions for kinetic and potential energy as functions of these 
coordinates. 

In the classical description of motion, two measurable quantities of a 
particle in motion are its spatial position and momentum. If these values 
are known for any point in space and time, the particle’s motion or path 
can be calculated from Netwon’s second law of motion and knowledge of the 
external force law acting on the particle. If the particle’s motion is 
observed over a small portion of its path its momentum is nearly constant. 
The product of the particle’s momentum and small distance is called the 
increase in the particle’s action. This action is a scalar quantity that the 
particle carries with it and increases as the particle moves along its 
path. [2] 

§8.3. CALCULUS OF VARIATIONS 

The principal of stationary action appeared in Hero of Alexandria’s (62 
A. D.) Cataptrica (Optics) which described the reflection of light from a 
plane mirror as the shortest path taken. Pierre de Fermat (1601–1665) 

                                                 
2 This description of action differs from the original concept developed by P. 

Maupertuis who proposed that brachistochrome problem could be better solved by not 
considering the transit time of the movable particle, but rather by a quantity called action. 
Maupertuis incorrectly defined this action as the product of the distance the particle travels 
and its speed [Motz89] 
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reformulated this concept as the principal of Least Time in 1657. Fermat 
stated that a light ray required the least time even if deviated from the 
shortest physical path, 

... nature operates by the simplest and most expeditious way 
and means. 

Fermat’s principal was capable of producing the correct law of 
reflection and lead to the law relating the angle of incidence and reflection 
at an interface to the ratio of the refractive indices of the media. The 
relationship was confirmed experimentally by Willebrord Snell van Royen 
(1591–1626) in 1621 and is known as Snell’s law. 

The calculus of variations and the principle of least action combine to 
form a powerful method of investigating problems in dynamics. Pierre–
Louis Moreaude Maupertuis (1698–1759), the author of the Principle of 
Least Action in 1774, declared it to be a metaphysical principle on which 
all canons of motion are based. [3]  The Newtonian equations of motion can 
be written in a form which makes the transition to quantum mechanics 
appear natural [Byro69]. 

The concept and principle of least action were generalized by 
Hamilton to include the propagation of light as well as the motion of 
particles. By placing a restriction on the definition of action Newtonian 
mechanics can be transformed into quantum mechanics. Newtonian 
mechanics assumes that a particles motion can be followed in infinite 
detail and infinite precision. If this were possible than the motion of a 

                                                 
3 Eighteenth century philosopher scientists learned to compute the paths taken by 

planets and objects using Newton's equations of motion. A French geometer and 
philosophea, Pierre–Louis Moreau de Maupertuis [Maup46] along with Joseph Louis 
Lagrange showed that the paths taken by these objects are always the most economical 
when the kinetic and potential energy are computed as a single quantity. In the way the 
moving object minimizes it action — a quantity based on the objects velocity, mass and the 
space through which it travels. No matter what forces were applied to the object, it 
somehow choose the cheapest of all possible paths. Unlike the total energy of an object — 
its kinetic and potential energy — which are always conserved, the quantity of action is 
constantly changing. No matter what value the action may assume during the objects 
flight, at the destination the action will a minimum of all the possible actions that could 
have occurred. In this view of mechanics, the object seems to choose its path, with the 
knowledge of all possible paths — at the beginning of the motion. Maupertuis wrote...  

It is not in the little details ... that we must look for the supreme Being, 
but in phenomena whose universality suffers no exception and whose 
simplicity lay them quite open to our sight. [Glei92], [Feyn64], [Your68]. 
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particle could be described by the particles position and momentum at a 
single point in space and time. 

This process would be observable if all physical entities were infinitely 
divisible. However if nature is somehow limited in its divisibility than the 
action during a process can change only by a finite amount h , than the 
precise determination of a particle’s motion can never be determined. In 
order to determine the particles motion precisely, the momentum and 
position must be known at the same point in space and time. 

Since the action is the product of momentum and a measured spatial 
interval that must be taken as infinitesimal, the action becomes 
infinitesimal and thus smaller than some limit h . The result is that the 
momentum becomes infinite, losing all knowledge of the particles action. 
The result is that the particle’s action becomes quantized so that its 
position and momentum can not be simultaneously known. The full impact 
of this result will be developed in later sections. 

§8.4. ORDINARY MAXIMUM AND MINIMUM THEORY 

The calculus of variations has been an important branch of 
mathematical physics for nearly three centuries. The task of finding points 
at which a functions possesses a maximum or minimum is common in the 
analysis physical problems. In the calculus of variations, functional forms 
are found in which integrals assume maximum or minimum values. These 
forms may contain several variables and describe multidimensional 
processes. Before considering maxima and minima of an integral function, 
the theory of the calculus of functions of a single variable will be 
examined.  

Let ( )f x  be a continuous function of a single variable, x, having a 
maximum or minimum value at =x a . The for a sufficiently smallε , there 
is a maximum at, 

 + ε − <( ) ( ) 0f a f a , (8.10) 

and a minimum at, 

 + ε − >( ) ( ) 0f a f a . (8.11) 

Taking the maximum case and assuming + ε( )f a  can be expanded in 
positive integral powers of ε , by Taylor's theorem, gives, 

 + ε − = ε + ε + ε& &&2 3( ) ( ) ( ) ½ ( ) ( )f a f a f a f a O . (8.12) 
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The Landau symbol, O, has the meaning: ε3( )O  possesses the property 
that as ε → 0 , the quantity ε ε3 31 ( )O  is bounded. From Eq. (8.10) and 
Eq. (8.12) at a maximum or a minimum the sign of + ε −( ) ( )f a f a  is 
independent of the sign of ε , and so from Eq. (8.12) =&( ) 0f a . 

From Eq. (8.10) and Eq. (8.12) it follows that at a maximum &&( )f a  is 
negative and from Eq. (8.11) and Eq. (8.12) that at a minimum &&( )f a  is 
positive. Alternatively at a maximum &( )f a  is a decreasing function of a 
and at a minimum it is an increasing function of a. 

It is possible that =&( ) 0f a  and that ( )f a  is neither a maximum or 
minimum of ( )f x . Such a condition occurs when =&( ) 0f a  and =&&( ) 0f a , and 

≠&&&( ) 0f a . It is then customary to say that ( )f a  is a stationary value of 
( )f x . In general all roots of =&( ) 0f x  are said to give rise to stationary 

values of ( )f x . With this brief background the Lagrangian formalism will 
developed in the next section. 

§8.4.1. Lagrangian Formalism and the Calculus of Variations 

The Lagrange formalism will be developed through a simple example 
— the motion of a particle with mass m in a harmonic oscillator potential 
given by = 2( ) / 2V x kx . According to Newton's second law of motion, the 
acceleration of the particle is determined by, 

 = −&&mx kx , (8.13)
  

which has the well known solution, 

 = ω + φ0 cos( ),x x t  (8.14) 

where ω = k m , is the angular frequency, the constants 0x  and φ  are 
determined by the initial conditions. 

Consider two times 1t  when the particle is at position 1x  and 2t  when 
the particle is at position 2x . The path the particle follows between times 1t  
and 2t  can be described by the quantity, 

  =   ∫
2

1

,
t

t

dx
S x dt

dt
L , (8.15) 
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where the difference between the kinetic energy T and the potential 
energy V, = −T VL is called Lagrangian. The quantity S, which in the past 
was called Hamilton’s Principal Function, but is now called the action 
function. Dimensionally, the action is an energy times a time and has 
similar dimensions as Planck's constant. 

The action, S, is a functional of x, that is it is a function of the function 
( )x t , which describes the path satisfying the two constraints that ( )x t  at 

time = 1t t  assumes the value 1x , while ( )x t  at time = 2t t  assumes the value 

2x . Apart from these constraints the path may be arbitrary. 

The action S is then a function of the different paths satisfying the two 
constraints. In order to formulate the extremum on S, a family of functions 
is considered, given by, 

 α = +αη( , ) ( ,0) ( ),x t x t t  (8.16) 

where the function ( ,0)x t  is the one corresponding to the extremum. The 
function η( )t  is arbitrary, except that is satisfies the constraints 
η = η =1 2( ) ( ) 0t t . 

The action S is then a function α( )S  of the parameter α , 

 ( )α = α α∫ &
1

( ) ( , ), ( , ), .
t

S dt x t x t t
2t

L  (8.17) 

This expression allows for the possibility that the extremum may depend 
explicitly on time with the force constant of the harmonic oscillator being a 
function of time, = ( )k k t . 

The extremum condition is given by, 
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∂ =
∂α 0

0,
S  (8.18) 

By differentiating Eq. (8.18) with respect to the parameter α  gives, 

 ( )∂ ∂ ∂  = − η  ∂α ∂ ∂  ∫ &
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Integrating by parts [4] in order to replace η  by η& , results in, 

 ∂ ∂ ∂  = − η  ∂α ∂ ∂  ∫ &
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1
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since, 
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The extremum condition Eq. (8.21) then becomes, 

 ∂ ∂  − = ∂ ∂ & 0,
d
dt x x

L L  (8.22) 

since η( )t  is arbitrary except for the condition η = η =1 2( ) ( ) 0t t . 

Eq. (8.22) is named the Lagrange equation. The derivative of 
Lagrange's equation started from a consideration of the instantaneous 
state of the system and small virtual displacements about the 
instantaneous state, i.e. from a differential principle such as D'Alembert's 
principle. [5] It is also possible to obtain Lagrange's equations from a 

                                                 
4 The method of integration by parts employs the identity 

( ) ( ) ( )f dg dt d fg dt g df dt= − , were f and g both are functions of t. When both sides of 

this equation are integrated with respect to t over the interval from t1  to t 2  the result is 

( ){ } [ ] ( ){ }
1

1 1

t

t t

f dg dt dt fg df dt g dt= −∫ ∫
2 2

2

t t
t

. 

5 It is surprising that there can be several formulations of the principals of mechanics. 
Once it is understood that mechanics is a description of motion, then different methods of 
describing this motion can serve different purposes. Although Newton’s method of 
describing the motion of particles has long been the most useful simple approach other 
formulations have been created which attempt to simplify the solutions of various types of 
problems. These alternative formulations differ considerably in their concepts of mass and 
force. 

Some are restatements of Newton’s laws, while others introduce new concepts. 
D’Alemberts’s principal is a restatement of Newton’s Laws which seeks to reduce dynamics 
to statics using Newton’s concept of mass and force. D’Alembert formulated his principal in 
1743 in the work Traitê de Dynamique, which was revised in 1758 as A general principal 
for finding the motions of several bodies which react on each other in any fashion.  In 
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principle which considers the entire motion of the system between times 1t  
and 2t  and small virtual variations of the entire motion from the actual 
motion. 

§8.5. GENERALIZED COORDINATES 

It is not always convenient to use Cartesian coordinates when solving 
problems in Newtonian mechanics. Alternative coordinate systems result 
in simpler solutions. The analysis of the motion of a pendulum is an 
example. The Lagrangian formulation of the equations of motion is well 
suited for these non–Euclidean or constrained dynamical variables. The 
generalized coordinates presented in this section are not alternatives to 
Euclidean coordinate systems, but are descriptions of the configuration of 
the mechanical system with iz  degrees of freedom. An example of such a 

                                                                                                                                          
D’Alembert’s formulation the concept of virtual displacements is used to describe the 
motions of particles in the presence of external forces. This principal can be stated in a 
general form as: 

... if there are n particles 1, 2, 3, ..., n acted on by forces 1 2 3, , , …F F F , 

respectively, and if these are given arbitrary (virtual) displacements 

1 2 3, , ,…d d dr r r , where r is the position vector of the particle, the condition 

of equilibrium under the action of the forces is 

1 1 2 2 3 3 0n n⋅ + ⋅ + ⋅ + + ⋅ =LF d F d F d F dr r r r  [Lind56] 

The second type of formulation employees the concept of energy, Hamilton’s principal 
being the one utilized here. In 1894 Heinrich Hertz published Principals of Mechanics in 
which he re–established the principals of mechanics with logical a consistency not found in 
the usual Newtonian presentations of the day. Such late 19th century works usually 
contained metaphysical uncertainties and vagueness. Hertz attempted to reduce dynamics 
to kinematics, avoiding concepts like force, mass and energy. The fundamental principal of 
Hertzian mechanics is: 

Every free system remains either is a state of rest or in uniform 
motions along a straightest path [Lind56]. 

Since most system encountered in practical situations are non–free Hertz assumes 
that every part of a non–free system is part of a free system. Every motion of a free system 
or its non–free parts obeys the fundamental principal called natural motion, and Hertzian 
mechanics is only concerned with natural motion. There were serious problems with the 
description of motion, since in order to make the principal work it was necessary to invoke 
the existence of other particles, which may not be immediately discernible. The words 
concealed became associated with Hertz’s principals.  

Even though Hertz’s concept did not lead to a particle method of computing the 
motions of particles it did lay the foundation for Hamilton’s principal, in which the 
concealed aspects of the motion becomes the energy of the system which is minimized 
during the particles motion. 
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system is n particles each with mass im  and coordinates iz , where 
= …1, 2, ,i n . By choosing any  independent functions of the original 3n  

dynamical coordinates iz , ( ) ( ) ( )( )= = =i j iq q t q t q z t , where = …1,2, , 3j n , 
the new dynamical variables can be defined. These new variables are the 
generalized coordinates, ( )= iq q t  and the  generalized velocities, 

( )=& iq dq t dt  [Doug90]. 

It is straightforward to generalize the Lagrange formalism to systems 
with more degrees of freedom than are found in classical mechanics. This 
may be done by considering a system described by the set of generalized 
coordinates rq , where r assumes the values …1, 2, , s . As before, the 
Lagrangian is the difference between the kinetic and potential energies is 
given by = −T VL . 

The Lagrange equations are derived by requiring the action, 

 ( )= ∫ & & &… … … …1

2
1 2 1 2, , , , ; , , , , ;

t

r rt
S q q q q q q t dtL , (8.23) 

to have an extremum. The equations of motion or Lagrange's equations, 
then become, 

 
 ∂ ∂

− = ∂ ∂ & 0
r r

d
dt q q

L L
, (8.24) 

where the time derivative of the generalized coordinate is now given by, 

=& dq
q

dt
 [Whit37]. [6] This formulation of Lagrange's equations is most 

powerful for theoretical purposes and will be used in the development of 
the electromagnetic field Hamiltonian. The most significant property of 
Eq. (8.24) is its invariance with respect to arbitrary coordinate 
transformations. Proof of this important attribute is given in [Your68], pp. 
37–39. 

The Lagrangian of a system is not unique. The total time derivative of 
an arbitrary function can be added to the Lagrangian L to give a new 
Lagrangian ′L , such that, 

                                                 
6 For a particle moving in a time independent potential, the Lagrangian does not 

depend explicitly on time. If the system is isolated in such a manner so that time 
transformation invariance is preserved, the Lagrange equations can be shown without an 
explicit time dependence and written as, L ( , & )q qi i . 
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 ( ) ( ) ( )′ = + && &, , , , ,r r r r rq q t q q t f q tL L , (8.25) 

which has the same properties as the initial Lagrangian L with respect to 
the principle of least action. The action function ′S  relative to the 
Lagrangian ′L  is given as, 

 ( ) ( )′ ′= = + −∫
2

1

2 2 1 1( ), ( ),
t

r r

t

S dt S f q t t f q t tL . (8.26) 

Since the initial and final positions are fixed S and ′S  have the same 
extremum and differ only by a constant. 

§8.6. HAMILTONIAN FORMALISM 

If the only use of the Lagrangian action principle is to regenerate the 
equations of motion it would be considered interesting but redundant. 
However, the Lagrangian action principle provides a description of the 
dynamics of a system which contains more information than supplied by 
Newton's equations of motion. First the action function, S, is a global 
statement about the system, from which a local differential equation can 
be derived by imposing the extremum condition. The action is global in the 
sense that it receives contributions from the entire trajectory of the 
particle in motion. As such the action records the history of the particle's 
motion. Second, although the action is extremized by the set of classical 
trajectories that are the solution to Eq. (8.24), the action can be evaluated 
for any trajectory. Third, the action approach allows the definition of the 
canonical coordinates of position and momentum to be generalized by 
describing the energy of the system through the Hamiltonian. 

The solution of a dynamical problem by Lagrange's method requires 
the integration of n second–order differential equations in the n 
unknowns …1, , nq q . An alternative system proposed by Hamilton consists 
of 2n first–order differential equations in 2n unknowns, and has the 
advantage that it is simple and concise in its formulation [Hami35] [7]. In 

                                                 
7 Hamilton was an astronomer and mathematician in Dublin, Ireland. As a child 

prodigy he was able to translate from Latin and Greek at age 5 and had mastered 13 
languages by age 13. He studied at Trinity College, Cambridge and was appointed professor 
of astronomy at age 22. Hamilton’s works include mechanics and optics as well as the 
discovery of quanternions, which generalize complex numbers to a non–communtative 
algebra. Although Hamilton died 35 years before Planck published his theory of quantum 
mechanics, Hamilton has been immortalized through his association with the energy 
operator in Schrödinger’s wave equation. 
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Hamilton's equations, the canonical equations constitute the basis for the 
quantum mechanical formulation of electrodynamics. An original concept 
introduced by Hamilton is the generalized momentum, which is defined as,  

 δ ∂≡ =
δ ∂& &( )

( ) ( )r
r r

S
p t

q t q t
L . (8.27) 

Defining the generalized momenta as = &p mx  allows the introduction 
of the Hamiltonian by the transformation, 

 ( ) ( ) ( )= −& &, ( , )r rp q p q p q q q p qH , L , . (8.28) 

The differential d
dt
H  is, 

 ∂= + − = − + = −
∂

&& & &d
pdq qdp d pdq qdp

dt t
H LL , (8.29) 

since, 

 ∂=
∂

&p
q
L . (8.30) 

It follows from Eq. (8.29) that the equations of motion for the system 
may be written as, 

 

 ∂ ∂≡  ∂ ∂ 

   ∂ ∂= −   ∂ ∂   

      ∂ ∂∂ ∂= − −      ∂ ∂ ∂ ∂      

      ∂ ∂∂ ∂= − −      ∂ ∂ ∂ ∂      
= −

∑

∑ ∑

∑ ∑

&

&

& &
&

& &
&

&

,

,

,

,

.

r r p

s
s

s r rp p

s s
s

s ss r s rq p

s s
s

s ss r s rq p

r

q q

q
p

q q

q q
p

q q q q

q qd
p

q dt q q q

p

H H

L

L L

L L

[8] (8.31) 

                                                 
8 In this derivation of the Lagrange equations the index subscript r or s is used to 

indicate the rth or sth coordinate, in order to distinguish between each generalized 
coordinate in a multidimensional coordinate space. The suffix to the bracketed derivative 
indicates that the q's are kept constant while the index is summed over the s's. 
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 ∂ ∂≡  ∂ ∂ 

   ∂ ∂= + −   ∂ ∂   

      ∂ ∂∂ ∂
= + −      ∂ ∂ ∂ ∂      
=

∑

∑ ∑

&&
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,

.

r r q

s
r s

s r rq q

s s
r s

s ss r s r qq

r

p p

q
q p

p p

q q
q p

q p q p

q

H H

L

L L

 (8.32) 

which constitute Hamilton's equations. The change of variables from &( , )q q  
to ( , )q p  results from the transformation in Eq. (8.31) which is known as a 

Legendre transformation. [9] 

Restating the equations of motion in terms of the coordinates and the 
momenta results in the Hamiltonian of the system, 

 = −∑ & &( , , ) ( , , )r r r rp q t p q q q tH L , (8.33) 

which describes the dynamics of the system in terms of the sum of the 
kinetic energy and the potential energy. Hamilton's principle requires that 
the path taken by any physical system between two states at specified 
times and with fixed values of the variables must be such that the value of 

the function δ −∫ 1 ( )
o

t

t
T V dt  must be an extremum. In this form Hamilton's 

principle is sufficient to generate both the equations of motion of the 
system and the boundary conditions for any continuous field with localized 
forms of energy. [10]  

For the actual solution of problems, the equations of Lagrange are 
more convenient than those of Hamilton, since the first step in integrating 
                                                 

9 The change in basis from ( , &, )x x t  to ( , , )x p t  is accomplished through the Legendre 
transformation. Consider a function of the variables f x y( , )  so that a  differential of f has 
the formdf udx vdy= + , where u f x= ∂ ∂  and v f y= ∂ ∂ . To change the basis of the 
description from x y,  to the independent variables u y, , so that differential quantities are 
expressed in terms of the differentials du  and dy . Let g be a function of u and y defined by 
the equation g f ux= − . A differential of g is then given as dg df udx xdu= − −  which has the 
desired form. The quantities x and v are now functions of the variables u and y by the 
relations ( )x g u= − ∂ ∂ , ( )v g y= − ∂ ∂ , which are the converse of the above relations for u 

and v. 

10 For physical applications, L ( , & , )x x ti i  must be chosen so that the Euler–Lagrange 
equations represent the correct equations of motion. 
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Hamilton's equations is to reduce their number by half, an operation 
which leads back to the original Lagrange equations. 

The dominate position of the equations of Lagrange in the history of 
dynamics can best be cited in Hamilton's own words.  

The theoretical development of the laws of motion of bodies is 
of such interest and importance, that it has engaged the 
attention of all the most eminent mathematicians, since the 
invention of dynamics as a mathematical science by Galileo... 
Among the successors of those illustrious men, Lagrange has 
perhaps done more than any other analyst, to give extent and 
harmony to such deductive researches, by showing the 
motions of systems of bodies may be derived from one radical 
formula; the beauty of the method so suiting the dignity of the 
results, as to make his great work a kind of scientific poem. 
[Hami34]. 

§8.6.1. Canonical Coordinates and Poisson Brackets 

The Hamiltonian and the Lagrangian are related as, 

  ∂ ∂ = −  ∂λ ∂λ   & &
.

,, p qp q

H L  (8.34) 

The Hamiltonian equations of motion are also known as the canonical 
equations, resulting in, 

 ∂ ∂ ∂ ∂= = − = −
∂ ∂ ∂ ∂

&& ; ; .r r
r r

q p
p q t t
H H H L  (8.35) 

The Hamiltonian formulation provides an elegant description of 
mechanics in which the position and momentum of each particle is treated 
as though they were independent quantities. The coordinates rq  and the 
momentum rp  are actually allowed to be more general than just Cartesian 
coordinates. In particular Hamilton's equations form the basis of the 
quantum formulation of Maxwell's equations, since the field potential 
becomes an integral part of the canonical momentum and is treated as if it 
were a generalized coordinate in the Lagrange equations. [11] 

                                                 
11 Equations Eq. (8.31) and Eq. (8.32) are also valid for a system of N particles with 

coordinates ( , , , )x x x N1 2 3… . The forces between the particles can be represented by the 
potential energy V x x x N( , , , )1 2 3… . The Newtonian equations of motion in Eq. (8.33) may be 
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Hamilton’s equations can be restated using the Poisson bracket 
notation. For a system of s generalized coordinates and s generalized 
momenta, the Poisson bracket can be defined for any two functions ( ),u p q  
and ( ),v p q  is an antisymmetric operation given as, 

 { }
=

∂ ∂ ∂ ∂= −
∂ ∂ ∂ ∂∑

1

,
s

i i i i i

u v v u
u v

q p q p
 (8.36) 

This form can be rewritten as, 

 
=

 ∂ ∂
= + ∂ ∂ 
∑ && &

1

S

i i
i i i

u u
u q p

q p
 (8.37) 

for the variation of any physical quantity u. Using Hamilton’s equations, 

  =  & ,u uH . (8.38) 

Substituting the generalized coordinates of position and momentum 
gives, 

 { }=& ,i iq q H , (8.39) 

and 

 { }=& ,i ip p H . (8.40) 

Several identities result form the Poisson bracket notation that will be 
useful in the formulation of  quantum mechanics,  

First, 

 { } = δ ,,i i i jq p . (8.41) 

The Poisson brackets involving only p or q vanish as, 
                                                                                                                                          
considered as Euler equations corresponding to the requirement that the function S should 
be an extremum. This alternative concept is important because it enables the equations of 
motion to be expressed in a form that is invariant with respect to the coordinates. The 
extremum requirement (Hamilton's Principle) contains only physical quantities such as 
kinetic and potential energy, which are independent of the coordinate system. For any 
arbitrary coordinate system, the momenta p xj j= ∂ ∂L &  do not in general have dimensions 
of true momentum, with the coordinate x j being a dimensionless angular quantity. The 
product of any momentum p j with its associated coordinate x j always has the dimensions 
of  action (energy time× ). The momentum p j and the coordinate x j are said to be 
canonically conjugate. 
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 { } { }= =, , 0i i i ip p q q . (8.42) 

Quantities whose Poisson brackets are zero, commute, and those whose 
Poisson brackets are equal to 1 are canonically conjugate. From Eq. (8.39), 
it can be seen that any quantity that commutes with the Hamiltonian does 
not vary with time. 

Using Eq. (8.36), if the Poisson bracket of a function u with a constant 
c gives, 

 { } =, 0u c , (8.43) 

and, 

 { } { }= −, ,u v v u . (8.44) 

Using the rules of differentiation, 

 { } { } { }+ = +, , ,u v w u w v w , (8.45) 

and, 

 { } { } { }= +, , ,u vw u v w v u w . (8.46) 

Using the Poisson brackets and Hamilton's equations of motion, 

 { }∂= +
∂ ,

,
p q

du u
u

dt t
H  (8.47) 

and 

 { } = δ ,,
,i j i jp q

q q  (8.48) 

It is the Poisson bracket formalism that will serve as the basis of the 
quantum mechanical commutator algebra developed in the subsequent 
sections. 

§8.7. STANDARD LAGRANGIAN OF CLASSICAL ELECTRODYNAMICS 

To this point in the monograph the radiation field density has been 
treated in form described by Eq. (4.33). As such the details behind this 
equation have not been developed. Before proceeding with the operator 
approach to the quantum field equations, the Hamiltonian form of the field 
equations will be addressed. 

The field energy described in Eq. (4.33) can be derived through the 
expansion of Maxwell's equations using Hamilton's equations of motion 
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with equations ( VI ) and ( VII ) representing the electric and magnetic 
energy densities of the field proper. These energies are considered to reside 
in the field and to be localized by ( VI ) and ( VII ) in every volume element, 
such that a volume dv contains field energy in the amount +∫ E B2 21

2 ( )
V

dv . 

The development of the Hamiltonian form of the field energy, starting 
from Maxwell's equations is one approach. [12]  Another approach is to 
construct the field equations and their associated Hamiltonian, by 
searching for the Lagrangian that results in the proper field equations. 
That is the approach taken here and by [Your68]. [13]  

The Lagrange and Hamilton equations of motion developed in the 
previous section will be used to derive the Hamiltonian for the radiation 
field, which in turn will be used to derive the operator formulation of the 
electromagnetic radiation field. This approach will be worked out in detail 
starting with the equations of motion for a charged partial in an 
electromagnetic field and concluding with the Hamiltonian for the same 
field. 

In this case the forces on the particle are not derived from the field 
potential, but rather arise from the velocity of the particle as it travels 
through the field. The acceleration (change in momentum) of the charged 
particle is given by the Lorentz equation, 

 ( ){ }≡ = + ×E B&F p e v  (8.49) 

where v of the velocity of the particle, e is the particle's charge and EE  and 
BB  are the electric and magnetic fields. The EE  and B B  fields are derived 
from the vector potentials in the usual manner, 

 
∂ = −∇φ− 
∂ 

= ∇ × 

AE

B A

,

.
t  (8.50) 

The acceleration equation, Eq. (8.49), becomes, 

                                                 
12 For a more rigorous development of the radiation field energy and the associated 

conservation laws derived from Maxwell's equations rather then the Lagrangian, see §11 of 
[Eyge72]. 

13 This approach depends on developing the detailed Lagrangian for the radiation field 
equations in both vacuum and source forms. This section and the reference [Your68] 
provides the lowest details of the Lagrangian approach to quantum field problems. As such 
it gives insight to the current research activities in particle physics and quantum field 
theory. 
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{ }

{ }

∂= −∇φ− + × ∇ ×
∂
∂ = −∇φ− + ∇ ⋅ − ⋅∇ ∂ 

A A

A A A

& &

& &

( ) ,

( ) ( ) .

p e q
t

e q q
t

 (8.51) 

In order to express the equations in the Lagrangian form, Eq. (8.28), 
the following Lagrangian function is used, 

 = − φ + ∑ &r r
r

T e e A qL  (8.52) 

The generalized momenta, using Eq. (8.32), as, 

 
∂=
∂

′= + A
& ,

.

r
r

r r

p
q
p e

L
 (8.53) 

The form of Eq. (8.53) is similar to the Gauge transformations given in 
Eq. (4.7) and Eq. (4.8) and developed further . 

Finally the Hamiltonian is still equal to the total energy, using 
Eq. (8.52), 

 = −∑ & .r r
r

p qH L  (8.54) 

Moving to the Lagrangian for a charged body rather than a singular 
point, the Lagrangian is given by, 

  = + ρ − φ  
∑∫ A .r r
r

T v dVL  (8.55) 

where v is the velocity of the charge at any point, ρ is the charge density 
and dV is an element of volume. To obtain Eq. (8.55) the charged body is 
considered as a system of mutually attracting particles. The v's and ρ  are 
treated as functions of the generalized coordinates used to define the 
system. According to Eq. (8.55), the generalized momenta will be 
determined by, 

 ∂′= + ρ
∂∑∫ A& ,s

r r s
s r

v
p p dV

q
 (8.56) 

and the Hamiltonian, using the notation of Eq. (8.33) is given as, 
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 ∂

= − ρ + ρφ ∂ 
∑∫ ∫A&, .s

r r s
s r

v
q p dV dV

q
H H  (8.57) 

§8.7.1. Time Independent Lagrangian 

The development of the actual electromagnetic field equations 
depends on a fundamental difference between the pervious equations. Up 
to this point the field equations contained one independent variable, t, and 
several dependent variables, rq . In the electromagnetic field equations 
both the rq 's and t are independent variables, and the quantities 
specifying the field are the dependent variables. 

This situation can be described by considering a field defined by the 
quantities ( , )r rf q t . A Lagrangian, L, can be found which is a function of the 

rf 's, the ∂
∂

r

r

f
q

's and the &
rf 's, so chosen that Lagrange's differential 

equations, 

 

   
   ∂ ∂ ∂ ∂ ∂   + + − =
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 (8.58)

 

for the integral ∫ rdq dtL  to be stationary resulting in the equations of the 

field. Rewriting Eq. (8.58) by considering rf 's to be functions of the 
generalized coordinates evaluated at a specific point in space, results in 
the ordinary Lagrange equations for L and Eq. (8.58) for L, 

 
∂  ∂ ∂ ∂ ∂  + − =∂   ∂∂ ∂ ∂∂     ∂  

∑& 0r
s s rr

r

f
t q ff q

L
L L , (8.59) 
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are now equivalent, that is Lagrange's equations are valid for both point 
charges and distributed charges moving in the electromagnetic field. The 
Lagrangian L, which is a function of the dynamical variables can be 
rewritten as, 

 = ∫ 3
rd qL L , (8.60) 

where L is now called the Lagrangian density. [14] 

§8.7.2. Lagrangian Density 

In order to develop the underlying mathematics necessary for the 
quantum field description of electromagnetism, the standard Lagrangian 
will be extended. What is needed is a formalism that describes the 
observed phenomena of the radiation interaction with charged matter. 
This description must define the total Lagrangian L and maintain 
internal consistency, when the number of degrees of freedom becomes 
infinite. 

The Lagrangian formalism for systems of point particles and the 
derivation of the Hamiltonian provides an easy transition to quantum 
mechanics. The systems presented so far consist of a finite number of 
variables. Although there are many physical systems with a finite number 
of degrees of freedom, the electromagnetic field is not one of them. There 
are other cases such as gases or liquids all of  which have one or more 

                                                 
14 In the development of electrodynamics, the Lagrangian density is a function of the 

dynamical variables ( )iA r  and ( )idA dtr  where i describes all the individual points in the 

discrete space and rr  describes all the possible coordinate values. The Lagrangian density 
function of the coordinates ( )iA r  and the velocities ( )idA dtr  and the spatial derivatives, 

denoted by ∂ j iA , whose presence shows that the motion of the coordinate ( )iA r  is coupled  

to the motion of a neighboring point in the same manner the discrete variable qi  depends 
on qi−1  and qi+1  [Cohe89]. 

These spatial derivatives are not new independent variables but are linear 
combinations of generalized coordinates. In the study of electromagnetic theory the 
Lagrangian density takes on the form ( ), ,

i i j i
A dA dt A∂L . 

 The Lagrangian density that is used in electrodynamics contains generalized 
coordinate derivatives. Such a structure allows Maxwell's equations to be describe the 
motions of fields coupled from point to point in space. The absence of these spatial 
derivatives in the Lagrangian density would lead to a theory where the electromagnetic 
field evolves independently at each point in space. Since Maxwell's equations involve the 
spatial derivative of the field, the Lagrangian density also depends on spatial derivatives. 
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variables which are functions of continuous variables. There are various 
methods of transforming a discrete system to a continuous one. One 
method is to consider a continuous linear elastic structure as the limit of a 
system of point particles and then to generalize the results. A second 
method is to construct a generalized variational principle and the third 
method is to employ the Fourier transform to construct a generalized set of 
variables in Fourier space. There are several advantages to the third 
approach. First the continuous system which was a function of the 
continuous variable x is transformed to a discrete system of variables with 
an index of k, as long as the system is enclosed in a finite volume. 

By combining the first and third approach — using the Fourier spatial 
description of a linear elastic medium — a transition to the quantum field 
description can be made. The starting point starting point for this new 
Lagrangian will be the same as the transition from classical to quantum 
mechanics — Classical Hamiltonian dynamics. A generalized approach 
can be formulated by letting ( )φ rr   represent the displacement amplitude 
of the field at a point rr . This results in the field having an infinite number 
of degrees of freedom which must be specified at each point where irr   where 

→ ∞i . 

For a continuous space the summation in Eq. (8.59) becomes infinite 
and must be replaced by the integral in Eq. (8.60). In this way ( )L rr  
depends on the amplitude of the field at or near the point rr . This 
amplitude might be a function of ( )φ rr   itself and must contain the time 
derivatives of φ , just as the Lagrangian of a particle contains the kinetic 
energy, which is a function of velocity. The Lagrangian density L must 
also depend on the spatial derivatives of ( )φ rr , otherwise there would be no 
connection between the field amplitudes at neighboring points in space. 

The system is more easily quantized as a discrete formulation, since 
the Fourier coefficients can be directly introduced as creation and 
annihilation operators. There are some difficulties with this approach, but 
they will be dealt with in the section on gauge theory. Because of the 
difficulty a simplified  mechanical example will be used in which a 
longitudinal wave in one dimension is used to illustrate the idea. 

Starting with the one dimension longitudinal wave described by the 
wave equation, 

 ∂ φ ∂ φρ − µ =
∂ ∂

2 2

2 2 0
t x

, (8.61) 
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where ( )φ ,x t  is the displacement of point x at time t. The density of the 
elastic medium is ρ  and the restoring force of the media is µ . The length of 
the one dimensional media is L which requires ∂φ ∂x  vanishes at the 
boundaries. Given these conditions, the displacement function can be 
expanded in a Fourier series as, 

 ( ) ( )′φ = φ∑, sinkx t t kx , (8.62) 

where k has the periodic values π = …, 0, 1, 2,n L n  The periodic boundary 
condition ∂φ ∂ = 0x  can now be replaced by, 

 ( ) ( )φ + = φ, ,x L t x t . (8.63) 

Another simplification is to expand the Fourier series is an 
exponential such that, 

 ( ) ( )φ = φ∑1
, ikx

k
k

x t t e
L

, (8.64) 

where k is now the wave number which can be positive as well as negative. 
Since the Fourier expansion given in Eq. (8.64) involves complex numbers 
and ( )φ ,x t  is a real quantity in terms of φk  and −φ k  are related to each 
other through this complex conjugate ∗

−φ = φk k  resulting in k independent 
variables. 

The thk  instance of φ  can be obtained from the continuous function 
through Fourier transform, 

 ( )φ = φ∫
1 ikx

k x e dx
L

. (8.65) 

By letting the extent of the medium tend to infinity → ∞L  and using 
the following limits, 

 →
π∑ ∫2k

L
dk , (8.66) 

and, 

 ( )πφ → φ2
k k

L
. (8.67)

  

The Fourier transform pairs can be given as, 
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 ( ) ( )φ = φ
π ∫

1
, , ,

2
ikxx t k t e dx  (8.68) 

 ( ) ( ) −φ = φ
π ∫

1
, , .

2
ikxk t x t e dx  (8.69) 

The Fourier transform of the wave equation now becomes, 

 ∂φρ + φ =
∂

2
2 0k

kk
t

 (8.70) 

 

which is now the equations of motion of the system, but containing an 
infinite number of degrees of freedom. These equations can be derived 
from the Lagrangian, 

 ( ) − −φ φ = ρ φ φ − µ φ φ∑ ∑& & & 21 1
2 2,k k k k k k

k k

kL . (8.71) 

Using the relations given in Eq. (281) and Eq. (280) these transitions 
from the discrete formulation using φk  to the continuous formulation 
using ( )φ x  can be made. 

Considering the first term of the Lagrangian, 

 

( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )

−

−

ρ φ φ = ρ φ φ −

= ρ π φ φ −

= ρ φ φ

= = φ φ

∑ ∫

∫ ∫
∫

∫ ∫

& & & &

& &
& &

& &

1 1
2 2

1
2

1
2

1
2

,

2 ,

,

.

k k
k

ikx

k k dk

x dx e k dk

x x dx

x dx x xT

 (8.72) 

which is the kinetic energy density. The second term, 
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

−

−

−

−

µ φ φ = µ φ φ −

= µ π φ φ −

 ∂= µ π φ − φ − ∂ 
 ∂= µ π − φ φ ∂ 

 ∂= µ − φ φ ∂ 
 ∂ φ= µ  ∂ 

=

∑ ∫

∫ ∫

∫ ∫

∫ ∫

∫

∫

∫

2 21 1
2 2

21
2

2
1
2 2

2
1
2 2

2
1
2 2

2
1
2 2

,

2 ,

2 ,

2 ,

,

,

.

k k
k

ikx

ikx

ikx

k k k k dk

x k e k dxdk

x e k dxdk
x

x dx e k dk
x

x dx x
x

dx
x

x dxV

 (8.73) 

which is the potential energy density. 

 

 

 



Hamiltonian Mechanics 

Copyright  2000, 2001 8–29 

 

 

 

 

 

 

 

 

 

 

Frustra fit per plura, quod feiri potest per pauciora 

 OR 

Essentia non sunt multiplicanda praeter necessitatem 

 

(It is vain to do with more what one can do with less) 

 OR 

(Entities are not t be multiplier beyond necessitity) [15] 

   —  Occam’s Razor 

                                                 
15 Attributed to William of Occam, or Ockham, or probably Oakham in Surrey (1300–

1349), Oxford scholar in the Order of Franciscan Friars. Occam’s razor is widely used in 
scientific analysis with an interpretation akin to: One should always choose the simpler of 
two otherwise competing descriptions of physical phenomena. [Doug90]. 


